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Abstract

Most decisions must be made without advance knowledge of their consequences. Economists and psychologists have devoted much

attention to modeling decisions made under conditions of risk in which options can be characterized by a known probability distribution over

possible outcomes. The descriptive shortcomings of classical economic models motivated the development of prospect theory (D. Kahneman,

A. Tversky, Prospect theory: An analysis of decision under risk. Econometrica, 4 (1979) 263–291; A. Tversky, D. Kahneman, Advances in

prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5 (4) (1992) 297–323) the most successful

behavioral model of decision under risk. In the prospect theory, subjective value is modeled by a value function that is concave for gains,

convex for losses, and steeper for losses than for gains; the impact of probabilities are characterized by a weighting function that overweights

low probabilities and underweights moderate to high probabilities. We outline the possible neural bases of the components of prospect theory,

surveying evidence from human imaging, lesion, and neuropharmacology studies as well as animal neurophysiology studies. These results

provide preliminary suggestions concerning the neural bases of prospect theory that include a broad set of brain regions and neuromodulatory

systems. These data suggest that focused studies of decision making in the context of quantitative models may provide substantial leverage

towards a fuller understanding of the cognitive neuroscience of decision making.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Most decisions entail some degree of risk. Should one

purchase an extended warranty on a new car or take one’s

chances? Dash through the middle of a busy street or take

the long way via a crosswalk? Opt for surgery or radiation

therapy for a tumor? Invest retirement savings in the stock

market or treasury bills? From mundane dilemmas to life-

defining decisions, we are usually forced to choose without

knowing in advance what the consequences will be.
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The study of decision making under risk has been a major

thrust of microeconomics for most of the last century;

however, it has only received significant attention from

psychologists in the last few decades. Early behavioral

studies provided simple cognitive accounts of preferences

between chance gambles, with more recent studies exploring

the role of affect, motivation, and social context in such

decisions. The newest, and possibly most exciting, frontier in

this research area is the effort to understand the ways in

which neural processes mediate risk-taking behavior. The

last few years have seen a tremendous push by neuro-

scientists and their collaborators to apply modern neuro-

physiology methods (e.g., ERP, fMRI, and animal models) to

economic decisions. The purpose of this paper is to take
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Table 1

A decision matrix for a hypothetical roulette gambler

ACTS States

Red

(P = 18/38)

Black

(P = 18/38)

Green

(P = 2/38)

Bet $1 on red Gain $1 Lose $1 Lose $1

Bet $1 on black Lose $1 Gain $1 Lose $1

Acts are listed as row headings, states as column headings and possible

consequences are listed as cell entries (in italics).
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stock of some of these early efforts and relate them to more

traditional behavioral research on decision making under

risk.

The lay concept of briskQ is associated with hazards that

fill one with dread and/or are poorly understood [112]. In a

financial context, people tend to think of risk as increasing

with the magnitude and probability of potential losses [79].

Decision theorists, in contrast, view risk as increasing with

the variance in the probability distribution of possible

outcomes. Thus, a bet that offers $100 if a fair coin lands

heads and nothing if it lands tails is more briskyQ than an

option that offers $60 if a fair coin lands heads and $40 if it

lands tails. Economists following Knight [68] distinguish

risk from uncertainty. Decisions under risk entail options

that have well-specified or transparent outcome probabi-

lities, such as a bet on a coin toss or a lottery with a known

number of tickets. Decisions under uncertainty, by contrast,

entail options whose outcomes depend on natural events

such as a victory by the home team or a rise in interest rates,

so that probabilities must be estimated by the decision

maker with some degree of vagueness or imprecision. In the

present paper, we focus our attention primarily on decisions

under risk for the following practical reasons: (1) Risk is a

simpler domain that is better understood and more

thoroughly characterized by behavioral decision theorists,

(2) most extant work in cognitive neuroscience at this early

juncture speaks more directly to decisions under risk than to

decisions under uncertainty.

The following section of this paper provides a brief

historical overview of traditional models of decision making

under risk, culminating in prospect theory [61,123], the

most influential descriptive account that has emerged to

date. Next, we distill the most important facets of prospect

theory and map them onto relevant neuroscience studies. In

particular, we draw on basic neurophysiology, computa-

tional modeling, and clinical neuroimaging to advance a

novel framework that describes several candidate mecha-

nisms underlying risky choice behaviors. Finally, we

conclude by suggesting promising avenues for future

research. Naturally, at this early juncture, our conclusions

are preliminary and highly speculative.
2. The Classical theory of decision under risk

The primitives in most traditional models of decision

under risk and uncertainty are acts, states, and consequen-

ces. An act is an action that is associated with a set of

possible consequences that depend on which one of a set of

possible states of the world obtains. To illustrate, consider a

gambler who considers betting a dollar on a single spin of a

roulette wheel (see Table 1). The gambler considers two

possible acts: Bet on bredQ or bet on bblack.Q The

consequence of this decision depends on which state of

the world will occur after the roulette wheel is spun: The

ball will land in one of the 18 red numbers, one of the 18
black numbers, or one of the two green numbers (0 or 00).

Our roulette gambler faces a decision under risk because

the objective probabilities of each relevant state of the

world are transparent. If she were instead considering a bet

on either the home team or visiting team winning an

upcoming basketball game, our hypothetical gambler would

be facing a decision under uncertainty because she would

be forced to assess the probability that each team wins with

some degree of subjectivity and vagueness.

The origin of decision theory is usually traced back to a

17th century correspondence between Pascal and Fermat that

laid the mathematical foundation for probability theory.

Following this work, theorists asserted that decision makers

ought to choose the option that offers the highest expected

value (EV).

EV ¼ x1p1 þ x2p2 þ N þ xnpn

¼
Xn
i ¼ 1

xipi ð1Þ

where xi is the (monetary) outcome of state i and pi is the

probability of state i.

A decision maker is said to be brisk neutralQ if she is

indifferent between a gamble and its expected value; she is

said to be brisk averseQ if she prefers a sure payment to a

risky prospect of equal or higher expected value; she is said

to be brisk-seekingQ if she prefers a risky prospect to a sure

payment of equal or higher expected value. Thus, expected

value maximization assumes a neutral attitude toward risk.

For instance, a decision maker who employs this rule will

prefer to receive $100 if a fair coin lands heads (and nothing

otherwise) to a sure payment of $49, because the expected

value of the gamble ($50 = .5 � $100) is higher than the

value of the sure thing ($49). Expected value maximization

is problematic because it does not allow decision makers to

exhibit risk aversion—it cannot explain, for example, why

people would prefer a sure $49 over a .5 probability of $100

or why they would purchase insurance. Swiss mathema-

tician Daniel Bernoulli [17] advanced a solution to this

problem when he asserted that people do not evaluate

options by their objective value but rather by their utility or

bmoral value.Q Bernoulli observed that a particular amount

of money (say, 100 ducats) is valued more when a person is

poor than when she is wealthy and, therefore, marginal

utility decreases as wealth increases. This gives rise to a



Table 2

The Allais Paradox presented as a lottery

Ticket numbers

1 2–11 12–100

A $1 M $1 M $1 M

B 0 $5 M $1 M

C $1 M $1 M 0

D 0 $5 M 0
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utility function that is concave over states of wealth (see

Fig. 1). In Bernoulli’s model, decision makers choose the

option with highest expected utility (EU):

EU ¼
Xn
i ¼ 1

u xið Þpi ð2Þ

where u(xi) represents the utility of obtaining outcome xi.

For example, a concave utility function implies that the

utility gained by receiving $50 is more than half the utility

gained by receiving $100 and, therefore, a decision maker

with such a utility function should prefer $50 for sure to a .5

probability of receiving $100.

Expected utility gained greater currency in economic

theorizing when von Neumann and Morgenstern [124]

articulated a set of axioms that are necessary and sufficient

to allow one to represent preferences by expected utility

maximization. The axioms were relatively simple and on

their surface seemed unassailable. For instance, one

prominent formulation of expected utility theory [107]

relies on an axiom known as the bsure-thing principleQ: If
two acts yield the same consequence when a particular state

obtains, then a person’s preferences among those acts

should not depend on the particular consequence (i.e., the

bsure thingQ) that they have in common. To illustrate,

consider a game in which a coin is flipped to determine

which fruit will be included in your lunch. Suppose that you

would rather receive an apple if a fair coin lands heads and

a cantaloupe if it lands tails (a, H; c, T) than receive a

banana if the coin lands heads and a cantaloupe if it lands

tails (b, H; c, T). If this is the case, you should also prefer to

receive an apple if the coin lands heads and dates if the coin

lands tails (a, H; d, T) to a banana if it lands heads and

dates if it lands tails (b, H; d, T).

The sure-thing principle is necessary to establish that

utilities of outcomes are weighted by their respective

probabilities. However, it was not long before the descriptive

validity of expected utility theory and its axioms were called

into question. The most powerful challenge has come to be
Fig. 1. A hypothetical utility function, demonstrating the concave relation-

ship between wealth and utility.
known as the bAllais ParadoxQ [4,5]. Consider the following
choices:

Decision 1. Choose between (A) $1 million for sure and;

(B) a 10% chance of receiving $5 million, an 89% chance

of receiving $1 million, and a 1% chance of receiving

nothing.

Decision 2. Choose between (C) an 11% chance of receiving

$1 million and; (D) a 10% chance of receiving $5 million.

Most people choose (A) over (B) in the first decision

and (D) over (C) in the second decision, which violates the

sure-thing principle. To see why, consider options (A)

through (D) as being payment schemes attached to different

lottery tickets that are numbered consecutively from 1 to

100 (see Table 2). Note that one can transform options (A)

and (B) into options (C) and (D), respectively, merely by

replacing the common consequence (receive $1 M if the

ticket drawn is 12–100) with a new common consequence

(receive $0 if the ticket drawn is 12–100). Thus, according

to the sure-thing principle, a person should favor option (C)

over option (D) if and only if he or she prefers option (A) to

option (B), and the dominant pattern of preferences violates

this axiom. Typically, people explain their choice in

decision (1) as a preference for certainty over a possibility

of receiving nothing; meanwhile, they explain their choice

in decision (2) as a preference for a higher possible prize

given that the difference between a probability of .10 and

.11 is not very large.

The Allais Paradox is perhaps the starkest and most

celebrated violation of expected utility theory. In the years

since it was articulated, numerous studies of decision

under risk have shown that people often violate the

principle of risk aversion that underlies much economic

analysis. Table 3 illustrates a common pattern of risk

aversion and risk seeking exhibited by participants in

studies of Tversky and Kahneman [123]. Let C(x, p) be

the certainty equivalent of the prospect (x, p) that offers to

pay $x with probability p (i.e., the sure payment that is

deemed equally attractive to the risky prospect). The upper

left-hand entry in the table shows that the median

participant was indifferent between receiving $14 for sure

and a 5% chance of receiving $100. Because the expected

value of the prospect is only $5, this observation reflects

risk-seeking behavior.

Table 3a reveals a fourfold pattern of risk attitudes: Risk

seeking for low-probability gains and high-probability



Table 3

Depiction of risk attitudes for pure and mixed gambles (from [123])

Gain Loss

(a) Pure gambles

Low probability C($100, .05) = $14

risk seeking

C(�$100, .05) = �$8

risk aversion

! Overweight low
probabilities

! Overweight low
probabilities

! (Concave value

function)

! (Convex value

function)

High probability C($100, .95) = $78

risk aversion

C(�$100, .95) = �$84

risk seeking

! Concave value

function

! Concave value

function

! Underweight high
probabilities

! Underweight high
probabilities

(b) Mixed gambles

0 ~ (�$100, 0.5; $202)

risk aversion

! Loss aversion

The primary mechanisms driving these risk attitudes, according to prospect

theory, are listed as bullet points below each entry (with mechanisms that

temper these patterns listed in parentheses). (a) The fourfold pattern of risk

attitudes for pure gain or pure loss gambles. C(x, p) is the median certainty

equivalent of the prospect that pays $x with probability p. (b) Acceptability

pattern for mixed (gain/loss) gambles. The median participant required a

50% probability of $202 to make up for a 50% probability of losing $100

(that is, a possible gain of $202 made this gamble equally attractive to

receiving nothing).
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losses, coupled with risk aversion for high-probability

gains and low-probability losses. Choices consistent with

this fourfold pattern have been observed in several

studies [41,52,61,92]. Risk seeking for low-probability

gains may contribute to the attraction of gambling,

whereas risk aversion for low-probability losses may

contribute to the attraction of insurance. Risk aversion for

high-probability gains may contribute to the preference

for certainty, as in the Allais [4] paradox, whereas risk

seeking for high-probability losses is consistent with the

common tendency to undertake risk to avoid facing a

sure loss.
1 There are a number of subtle differences between the original

formulation of prospect theory advanced in Kahneman and Tversky [61]

and the cumulative version advanced in Tversky and Kahneman [123]. In

the present paper, we will confine most of our discussion to choices among

risky prospects that offer a single positive and/or negative outcome, for

which these formulations coincide.
3. Prospect theory

The Allais Paradox and fourfold pattern of risk attitudes

are accommodated neatly by prospect theory [61,123], the

leading behavioral model of decision making under risk,

and the major work for which psychologist Daniel Kahne-

man was awarded the 2002 Nobel Prize in economics.

According to prospect theory, the value V of a simple

prospect that pays $x with probability p (and nothing

otherwise) is given by

V x; pð Þ ¼ v xð Þw pð Þ; ð3Þ

where v measures the subjective value of the consequence

x, and w measures the impact of probability p on the
attractiveness of the prospect (see Fig. 2).1 Prospect theory

differs from expected utility theory in a number of ways.

First, the utility function u(.) over states of wealth is

replaced with a value function v(.) over gains and losses

relative to a reference point (usually the status quo), with

v(0) = 0. Second, this subjective value function is not

weighted by outcome probabilities but rather by a decision

weight, w, that represents the impact of the relevant

probability on the valuation of the prospect. Decision

weights are normalized so that w(0) = 0 and w(1) = 1. Note

that w is not interpreted as a measure of degree of belief—a

person may believe that the probability of a fair coin

landing heads is one-half but afford this event a weight of

less than one-half in the evaluation of a prospect. Third,

unlike expected utility theory, prospect theory explicitly

incorporates principles of framing and editing that allow for

different descriptions of the same choice to give rise to

different decisions.

3.1. Characterizing the value and weighting functions

According to prospect theory, the shapes of the value

function v(.) and weighting function w(.) reflect the

psychophysics of diminishing sensitivity. That is, the

marginal impact of a change in outcome or probability

diminishes with distance from relevant reference points.

For monetary outcomes, the status quo generally serves as

the reference point distinguishing losses from gains, so that

the function is concave for gains and convex for losses

(see Fig. 2A). Concavity for gains contributes to risk

aversion for gains as with the standard utility function

(Fig. 1). Convexity for losses, on the other hand,

contributes to risk seeking for losses. For instance, the

disvalue of losing $50 is more than half the disvalue of

losing $100, which will contribute to a preference for the

gamble (lose $100 with probability .5) over the sure loss

(lose $50 for sure).

The prospect theory value function is also steeper for

losses than gains, a property known as loss aversion.

People typically require more compensation to give up a

possession than they would have been willing to pay to

obtain it in the first place (e.g., [65]) and the tendency for

the relative disadvantages of alternatives to loom larger

than the relative advantages supports a bias toward the

status quo (e.g., [106]). In the context of decision under

risk, loss aversion gives rise to risk aversion for mixed

(gain–loss) gambles so that, for example, people typically

reject a gamble that offers a .5 chance of gaining $100 and

a .5 chance of losing $100 (see Table 3b).



Fig. 2. Value and weighting functions from prospect theory. (A) Value

function v as a function of gains and losses. (B) Weighting function w for

gains as a function of the probability p of a chance event.

C. Trepel et al. / Cognitive Brain Research 23 (2005) 34–5038
Following Kahneman and Tversky [63], we can para-

meterize the value function as a power function2:

v xð Þ ¼ xa xz 0

� k � xð Þb x b 0

�
ð4Þ

where a, b N 0 measure the curvature of the value function

for gains and losses, respectively, and k is the coefficient of

loss aversion. Thus, the value function for gains (losses) is

increasingly concave (convex) for smaller values of a(b) b
1, and loss aversion is more pronounced for larger values of

k N 1. Tversky and Kahneman [123] estimated median

values of a = .88, b = .88, and k = 2.25 among their sample

of college students.

For probability, there are two natural reference points:

Impossibility and certainty. Hence, diminishing sensitivity

implies an inverse-S-shaped weighting function that is

concave near zero and convex near one, as depicted in

Fig. 2B. It explains the fourfold pattern of risk attitudes

(Table 3a), because low probabilities are overweighted

(leading to risk seeking for gains and risk aversion for

losses) and high probabilities are underweighted (leading to

risk aversion for gains and risk seeking for losses). It also

explains the Allais Paradox because the weighting function

is steeper between .99 and 1 than it is between .10 and .11

(so that the difference between a 0.99 chance of a prize and

a certainty of a prize in Decision 1 looms larger than the

difference between a .10 and .11 chance of a prize in

Decision 2). This inverse-S-shaped weighting function

seems to be consistent with a range of empirical findings

(see [1,23,49,96,126,128,129]).

Following Lattimore et al. [74], the weighting function can

be parameterized in the following form (which assumes that

the relation between w and p is linear in a log-odds metric):

w pð Þ ¼ dpc

dpc þ 1� pð Þc ð5Þ

where d N 0 measures the elevation of the weighting

function and c N 0 measures its degree of curvature. The
2 The power function implies constant relative risk aversion—as the

stakes of a prospect (x,p) are multiplied by a constant k then so is the

certainty equivalent of that prospect, C(x,p) so that C(kx,p) = kC(x,p).
weighting function is more elevated (exhibiting less overall

risk aversion for gains, more overall risk aversion for losses)

as d increases and more curved (exhibiting more rapidly

diminishing sensitivity to probabilities around the bounda-

ries of 0 and 1) as c b 1 decreases (the function exhibits an

S-shaped pattern that is more pronounced for larger values

of c N 1). Typically, the decision weights of complementary

events sum to less than 1 (w( p) + w(1 � p) b 1), a property

known as subcertainty ([61]). This property is satisfied

whenever d b 1. For chance prospects entailing possible

gains, Tversky and Fox [122] estimated values of d and c
for gains from the median responses of their sample of

college students to be .69 and .69, respectively. Tversky and

Kahneman [123] found similarly shaped weighting func-

tions for losses and gains when they fitted a single parameter

function to their data. A more recent investigation using the

two-parameter function above suggests that whereas the

curvature parameter c does not vary significantly between

losses and gains, the elevation parameter d tends to be

significantly higher for losses than gains [3].

The prospect theory parameters a, b, k, c, and d can all

be estimated for individuals using simple choice tasks on

computer. Although the typically measured values of these

parameters suggest an S-shaped value function (0 b a, b b 1)

with loss aversion (k N 1) and an inverse-S-shaped

weighting function (0 b c b 1) that crosses the identity line

below .5 (0 b d b 1), there is considerable heterogeneity

between individuals in these measured parameters. For

instance, in a sample of ten psychology graduate students

evaluating gambles involving only the possibility of gains,

Gonzalez and Wu [49] obtained measures of a ranging from

.23 to .68, d ranging from .21 to 1.51, and c ranging from

.15 to .89.

In sum, prospect theory explains attitudes toward risk

via distortions in the shapes of the value and weighting

functions. The parameters obtained by Tversky and Kahne-

man [123] and Tversky and Fox [122] suggest that the

fourfold pattern of risk attitudes for simple prospects that

offer a gain or a loss with low or high probability (Table

3a) is driven primarily by curvature of the weighting

function because the value function is not especially curved

for the typical participant in those studies (with a = b =

.88). Pronounced risk aversion for mixed prospects that

offer an equal probability of a gain or loss (Table 3b) is

driven almost entirely by loss aversion because the

curvature of the value function is similar for losses versus

gains and the decision weights are similar for gain versus

loss components.

3.2. Framing and editing operations

Expected utility theory and most normative models of

decision making under risk assume the principle of

description invariance: Preferences among prospects

should not be affected by how they are described. Decision

makers act as if they are assessing the impact of options on
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final states of wealth. Prospect theory, in contrast, explicitly

acknowledges that choices are influenced by how prospects

are cognitively represented in terms of losses versus gains

and their associated probabilities.

First, this representation can be systematically influenced

by the way in which options are described or bframed.Q
Recall that the value function is applied to a reference point

that distinguishes between losses and gains. A common

default reference point is the status quo. However, by

varying the description of options, one can influence how

they are perceived. For instance, decisions concerning

medical treatments can differ depending on whether

possible outcomes are described in terms of survival versus

mortality rates [84]. Second, the weighting function is

applied to probabilities of risky outcomes that a decision

maker happens to identify. The description of gambles can

influence whether probabilities are integrated or segregated

and, therefore, affect the decisions that people make [62].

For instance, people were more likely to favor a .25

chance of $32 over a .20 chance of $40 when this choice

was described as a two-stage game in which there was a

.25 chance of obtaining a choice between $32 for sure or

an .80 chance of $40 (in the two-stage game version

people are apparently attracted to the pseudo-certainty of

receiving $32). People may also actively reframe pros-

pects, adopting aspirations as reference points [51] or

persisting in the adoption of old reference points, viewing

recent winnings as bhouse moneyQ [120].3

Third, people may mentally transform or beditQ the

description of prospects they have been presented. The

original formulation of prospect theory [61] suggested that

decision makers edit prospects in forming their subjective

representation. Consider prospects of the form ($x1, p1; $x2,

p2; $x3, p3) that offer $xi with (disjoint) probability pi (and

nothing otherwise). In particular, decision makers are

assumed to (1) combine common outcomes of a pros-

pect—for example, a prospect that offers ($10, .1; $10, .1)

would be naturally represented as ($10, .2); (2) segregate

sure outcomes from the representation of a prospect—for

instance, a prospect that offers ($20, .5; $30, .5) would be

naturally represented as $20 for sure plus ($10, .5); (3)

cancel shared components of options that are offered

together—for example, a choice between ($10, .1; $50,

.1) or ($10, .1; $20, .2) would be naturally represented as a

choice between ($50, .1) or ($20, .2); (4) simplify prospects

by rounding uneven number or discarding extremely

unlikely outcomes—for example, ($99, .51; $5, .0001)

might be naturally represented as ($100, .5); (5) reject

options without further evaluation if they are obviously

dominated by other options—for instance, given a choice

between ($18, .1; $19, .1; $20, .1) or ($20, .3), most people

would naturally reject the first option because it is

stochastically dominated by the second.
3 For examples of framing effect in a riskless context, see Thaler

[118,119]).
3.3. Summarizing the key elements of prospect theory

Prospect theory has been very successful in explaining a

wide range of empirical regularities that have been

documented outside the laboratory (see [22])—from the

premium that equities demand over annuities in the market

[16] and the tendency to hold on to losing stocks too long

while selling winners too early [90] to the attractiveness of

state lotteries (cf. [25]). It also provides a flexible frame-

work for modeling empirical regularities and individual

differences that have been observed in laboratory studies.

The key elements of prospect theory may be summarized

as follows (see Table 4). The first two elements refer to the

valuation of outcomes, the next two refer to the weighting of

probabilities, and the last two refer to the representation of

prospects.

3.3.1. Curvature of the value function

The value function is concave for gains and convex for

losses (e.g., [1,2,49]). This has been typically attributed to the

psychophysics of diminishing sensitivity. Generally, the cur-

vature of the value function is relatively small and, therefore,

may not contribute substantially to measured risk attitudes;

Tversky and Kahneman [123] estimated a = b = .88 using the

median response of participants, which are close to values

obtained by several other researchers (however, Gonzalez and

Wu [49] estimated a = .49). Curvature of the value function

plays a greater role in riskless choice (see e.g., [118,119]).

3.3.2. Loss aversion

Losses loom larger than equivalent gains. This is

modeled by a value function with a loss limb that is steeper

than the gains limb (the parameter k N 1 in Eq. (4) above).

In risky choice, this is manifested as strong risk aversion for

mixed (gain–loss) gambles. For instance, most people

would reject a gamble for which they gain $100 if a fair

coin lands heads and lose $100 if a fair coin lands tails.

Typically, losses have at least twice the impact of equivalent

gains (i.e., k z 2) so that people would require a 50%

chance of gaining at least $200 to make up for a 50% of

losing $100 ([123], see also [2,64,63] for an explanation of

why loss aversion is needed to explain risk aversion for

mixed gambles see [97]).

3.3.3. Curvature of the weighting function

The inverse-S-shaped weighting function is characterized

by a tendency to overweight low probabilities and under-

weight moderate to high probabilities (modeled by c b 1 in

Eq. (5)). This shape is typically attributed to the psychophy-

sics of diminishing sensitivity [1,19,49,122,123]. The robust

fourfold pattern of risk attitudes (Table 3) suggests that

distortions in probability weighting are more pronounced

than distortions in value: Although the shape of the value

function implies risk aversion for gains and risk seeking for

losses, this pattern seems to be reversed for low-probability

events and reinforced for high-probability events.



Table 4

Summary of the major components of prospect theory

Component Phenomenon Description Manifestations in risky choice Relevant parameters

Value function Sensitivity to

gains and losses

Value function is:

- Concave for gains ! Risk aversion for medium probability gains 0 b a b 1 for gains

- Convex for losses ! Risk seeking for medium probability losses 0 b b b 1 for losses

Loss aversion Value function steeper

for losses than gains

Risk aversion for mixed (gain–loss) gambles k N 1

Weighting function Diminishing

sensitivity to

probability

near 0, 1

Weighting function is Fourfold pattern of risk attitudes c b 1

- Convex near 0

- Concave near 1

Subcertainty w( p) + w(1�p) b 1 Overall tendency toward risk aversion for gains

and risk-seeking for losses

d b 1

Prospect representation Framing effects Choices are influenced

by perceived reference

points and associated

probabilities

! Passive framing (e.g., reflection and

pseudocertainty effects)

N/A

! Active framing (e.g., house money and aspiration

effects)

Editing operations People spontaneously

edit their representations

to simplify decision tasks

! Combination of common outcomes N/A

! Segregation of sure outcomes

! Cancellation of identical outcomes

! Simplification and rounding

! Detections of dominance
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3.3.4. Elevation of the weighting function

The sum of decision weights for complementary proba-

bilities is typically less than one (i.e., w( p) + w(1 � p) b 1),

a principle known as bsubcertainty.Q This implies a weight-

ing function that crosses the identity line below .5 (modeled

by d b 1 in Eq. (5)). Loosely speaking, this reflects a more

pronounced tendency to underweight probabilities than to

overweight them. The overall attractiveness of risky

prospects varies from individual to individual, and this is

modeled by individual differences in the elevation of the

weighting function (see [49]).

3.3.5. Framing effects

Cognitive representations of prospects influence how

they are evaluated, in terms of losses and gains relative to

some reference point and the association of probabilities

with consequences. These representations can be systemati-

cally influenced by the way in which options are described

so that people make different choices among the same

prospects that are characterized in different ways.

3.3.6. Editing operations

When subjectively representing prospects, decision mak-

ers may actively edit prospects from the way in which they are

originally described, usually to simplify the representation.

3.4. Affective substrates of prospect theory

Prospect theory provides a characterization of decision

making under risk that emphasizes cognitive operations of

representation and the psychophysics of diminishing sensi-
tivity. However, it is becoming increasingly evident that

affect plays a prominent role in risky choice (for reviews,

see [76,85,105]). In particular, a number of recent studies

point to an affective component underlying observed

features of the value and weighting functions. This is of

particular interest given the involvement of limbic brain

regions in decision making, to be discussed further below.

3.4.1. Curvature of the value function

The degree of curvature of the value function represents a

decision maker’s sensitivity to increasing units gained or lost.

Although cognitive appraisal of scope (i.e., number of units)

surely plays a role in the representation of value for fungible

resources such as money, several researchers have argued that

people may also rely on their affective response to possible

outcomes as a bcommon currencyQ for assessing value and

making tradeoffs among disparate items (e.g., [93,113] cf.

[87]). To the extent that decision makers assess value based

on affective reactions, they should be relatively insensitive to

the quantity of the item being evaluated (for several

examples, see [66]) and the corresponding value function

will, therefore, be relatively flat. Indeed, Hsee and Rotten-

streich [55] find that the value function exhibits greater

curvature (i.e., lower slope above a minimum number of units

gained or lost) for consequences that are more baffect-rich.Q
For instance, in one study, participants were asked howmuch

they would be willing to pay to save various numbers of

pandas that were each represented either by cute pictures (an

baffect-richQ representation) or dots (an baffect-poorQ repre-
sentation). In the affect-poor (dots) conditions, participants

were willing to donate about twice as much if they had been
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asked about four pandas than if they had been asked about a

single panda. However, in the affect-rich condition (photos),

participants were willing to pay about the same amount if

they had been asked about one panda or four pandas.

3.4.2. Loss aversion

Although the affective sources of loss aversion are poorly

understood, loss aversion does appear to be moderated by

affect. For example, the affective richness of consumption

goods seems to enhance differences in perceived value of

gaining versus losing these items. Dhar and Wertenbroch

[29] report that loss aversion is more pronounced for

bhedonic goodsQ (goods rated bpleasant and fun, something

that appeals to the senses. . .Q) than utilitarian goods (goods

rated buseful, practical, functional. . ..Q). For instance, in one

study, participants were about equally likely to choose a $7

gift certificate for a music CD or audio tape (a hedonic

good) over a $7 gift certificate for computer disks (a

functional good), suggesting that these two goods were

viewed as equally attractive when considered as potential

gains. In contrast, participants who were given both gift

certificates were then later asked to give one up were five

times as likely to surrender the computer disk certificate as

the music certificate, suggesting that loss aversion was more

pronounced for the more affect-laden option. In the context

of risky choice, ambient affective states seem to moderate

loss aversion. Isen et al. [57] report that participants placed

in a positive mood (for instance, by giving them an

unexpected small bag of candy) tend to exhibit greater risk

aversion for mixed (gain–loss) gambles and that this effect

appears to be driven by greater sensitivity to possible losses

rather than greater appreciation of possible gains.

3.4.3. Curvature of the weighting function

Although traditional accounts of the curvature of the

weighting function stress the psychophysics of diminishing

sensitivity (e.g., [123]), others have speculated that affective

responses to gambles, such as hope and fear ([122], p. 282) or

anticipated elation versus disappointment [20], may play a

role. Indeed, Rottenstreich and Hsee [104] report that the

curvature of the weighting function seems to be more

pronounced for more baffect-richQ consequences, such as a

kiss from a movie star or an electrical shock, than for baffect-
richQ consequences such as money. In one study, participants

were asked to price a .01 and a .99 chance of receiving a

hypothetical $500 gift certificate. For one group, the

certificate would go toward payment of university tuition

(an affect-poor prize) and for a second group the certificate

would go toward a European vacation (an affect-rich prize).

For the .01 chance, the median participant in the vacation

condition was willing to pay more ($20) than the median

participant in the tuition condition ($5). However, for the .99

chance, the median participant in the vacation condition was

willing to pay less ($450) than the median participant in the

tuition condition ($478). In a similar vein, Faro and Rotten-

streich [37] find that people anticipate that others’ decisions
will reflect a less pronounced fourfold pattern of risk attitudes

than their own decisions (i.e., more linear weighting of

probabilities), but people who score higher on a standard

empathy concern scale (and are therefore better able to

bappreciate others’ emotional reactionsQ) tend to be more

accurate.

3.4.4. Elevation of the weighting function

There is some evidence that overall risk preferences for

pure gain and loss gambles are influenced by affective

states, which may be reflected in differences in the elevation

of the weighting function (or possibly the degree of

curvature of the value function). For instance, Mano [78]

finds that participants reporting higher states of arousal were

willing to pay more to play lotteries of various probabilities

(indicating greater risk seeking, consistent with a more

elevated weighting function for gains) and were willing to

pay less to insure against possible losses of various

probabilities (indicating less risk aversion, consistent with

a less elevated weighting function for losses). Lerner and

Keltner [75] report that people who score higher on a scale

of dispositional fear tend to be more risk-averse whereas

people who score higher on a scale of dispositional anger

tend to be more risk-seeking.
4. The neural basis of risky decision making

Although the study of decision making using cognitive

neuroscience techniques is relatively young, a growing body

of evidence suggests that decision making under risk is

mediated by a network of cortical and limbic structures

devoted to processing sensory, cognitive, and affective

information, as well as widely-projecting neuromodulatory

systems. In the discussion to follow, we will outline a set of

preliminary hypotheses regarding the neural systems that

may underlie some of the specific features of prospect

theory. These hypotheses are summarized in Table 5. We

first outline the important distinction between decision

utility and experience utility. We then describe the state of

current knowledge regarding the representation of utility, the

representation of probability, and the processes involved in

prospect representation.

It should be noted at the outset that, whereas much of

the literature cited here comes from experimental studies of

non-human animals, prospect theory has to date only been

applied to human decision making. However, because

fundamental psychological processes are likely to be at

least partially conserved between human and non-human

decision making (for example, see Marsh and Kacelnik

[80] for a prospect theory-informed study of risky decision

making in birds; Real [98] for a discussion of the Allais

Paradox relating to the foraging behavior of bumblebees;

Weber et al. [127] for a comparison of risk sensitivity in

humans versus foraging birds and insects), the appeal to

neuroscientific data from animals can provide useful insights



Table 5

Summary of neural systems hypothesized to be involved in the major

aspects of prospect theory

Component Prospect theory

feature

Brain areas Neurotransmitter

systems

Value function ! Representation
of value

- Anticipated

gains

- Ventral striatum ! DA (increase)

- ACC

- Anticipated

losses

- Amygdala

- Experienced

gains

- Dorsal/ventral

striatum

- VMPFC

- Experienced

losses

- ACC

- Amygdala

- Dorsal striatum ! DA (decrease)

! Loss Aversion ! Amygdala ! NA

Weighting

function

! Diminishing

sensitivity

! DA (hope?)

- Overweight

low p

- Ventral striatum

(hope?)

- Underweight

high p

- Amygdala

(fear?)

! Subcertainty ! 5-HT
(impulsivity)

Representation ! Framing ! DLPFC
! ACC

! Editing ! DLPFC ! DA
! VLPFC
(inhibition)

! 5-HT

Abbreviations: Dopamine (DA), Serotonin (5-HT), Noradrenaline (NA),

Dorsolateral prefrontal cortex (DLPFC), Anterior cingulate cortex (ACC),

Ventromedial prefrontal cortex (VMPFC).
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into the basic neural mechanisms underlying these psycho-

logical processes.

4.1. Neural representations of utility

Kahneman et al. [65] distinguish between bdecision
utility,Q which refers to the weight of an outcome in a

decision, and bexperience utility,Q which refers to its hedonic
quality. Although it is decision utility that is the primary

focus of prospect theory, both forms of utility are important

for understanding the neural basis of decision making.

Decision utility may be derived from predictions of the

experience utility of different options, which in turn may be

influenced by retrospective evaluations of similar past

experiences. However, Kahneman et al. [65] review a

number of contexts in which people’s retrospective evalua-

tions and their decisions do not accord with their on-line

ratings of experience utility—for instance, retrospective
evaluations are dominated by evaluations of salient moments

(the peak and end of an experience) and underweight the

duration of experiences (e.g., [59]). Thus, it is important to

distinguish the representation of experienced reward and

punishment (which may correspond to experience utility)

from anticipated reward and punishment (which may

correspond to predicted or decision utility). Results from

cognitive neuroscience suggest that this distinction may be

reflected in the roles of different brain systems in decision

making. Of particular relevance, Berridge and Robinson [19]

have distinguished between the bwantingQ (presumably

reflecting decision utility) and blikingQ (presumably reflect-

ing experience utility) aspects of motivation. We now review

the neural bases of each of these forms of utility in turn.

4.1.1. Decision utility

Regions involved in decision utility should exhibit

activity related to the anticipation of rewards or the assess-

ment of subjective value of future events. Human and non-

human animal studies provide evidence for the roles of the

dopamine system, ventral striatum, prefrontal cortex, and

amygdala in the representation of decision utility.

4.1.1.1. Dopamine system. Dopamine (DA) is a modu-

latory neurotransmitter that is produced by regions in the

midbrain (the substantia nigra pars compacta and the ventral

tegmental area) and transmitted broadly to a set of cortical

and subcortical regions [26]. The dopaminergic system

appears to be a primary substrate for the representation of

decision utility. A number of studies (reviewed by [108])

have shown that dopamine neurons increase their firing for

unexpected rewards and for stimuli that predict future

rewards, whereas they decrease their firing in the absence of

an expected reward. However, it is critical to note that DA

does not appear to code directly for the hedonic value of

rewards, as blockade of DA receptors does not reduce the

desirability of rewarding stimuli [56]. Rather, DA blockade

results in blikingQ without bwantingQ [18]; animals will fail

to act to obtain rewards but will nonetheless express

pleasure at receipt of the reward. One possibility is that

DA codes for the incentive value of stimuli, which

subsequently guides action selection (e.g., [18,82]).

4.1.1.2. Ventral striatum. The ventral striatum (including

the nucleus accumbens or NAc) serves as a locus for signal

integration between the prefrontal cortex, amygdala, and

hippocampus (for review, see [125]) and a wealth of recent

data suggest that it plays a critical role in the representation of

anticipated reward magnitude (reviewed by [69]). In one

study, Breiter et al. [21] visually represented several gain and

loss outcomes using different roulette wheel bspinnersQ.
Using fMRI, these authors found modulation of ventral stria-

tal responses to the expectation and experience of monetary

gains and losses, and a clear monotonic increase in activity

during exposure to a riskless bgains onlyQ stimulus (but see

[31]). Similarly, using a monetary incentive delay task,
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Knutson et al. [70] demonstrated that NAc activity increases

in anticipation of larger rewards. The ventral striatum is a

primary target of the DA system, and changes in ventral

striatal activity seen during neuroimaging may reflect either

DA activity or the intrinsic activity of ventral striatal neurons.

4.1.1.3. Prefrontal cortex. The prefrontal cortex is a large

and heterogeneous brain region, and it appears that different

regions may play different roles in decision making. The

dorsolateral prefrontal cortex (DLPFC) is particularly

important for the maintenance and manipulation of cogni-

tive representations in working memory and the planning of

future actions based on those representations. One possi-

bility is that this region plays a role in decision making

related to the representation of prospects and subsequent

decision utility computations. On the Iowa Gambling Task

(IGT), a popular neuropsychological test of decision making

[12], patients with lesions to the dorsolateral prefrontal

cortex show decision making impairments. In this task,

subjects are presented with four decks of cards with varying

monetary payoff values and must choose among the decks

to maximize their total payout. Two of the decks have

negative expected value and high risk, whereas the

remaining decks are less risky and have positive expected

values. Patients with DLPFC lesions do not learn to choose

optimally on this task [39,77]. These deficits may reflect an

inability to use strategies or rules to control behavior such

that DLPFC patients behave in a disorganized manner; for

example, patients with DLPFC lesions were able to

accurately assess the quality of financial advice on a task

involving the management of a simulated business but were

unable to actually use the advice in making decisions [48].

The ventromedial prefrontal cortex (VMPFC) also

appears to be involved in the development of anticipatory

responses to losses. Patients with lesions to the ventrome-

dial prefrontal cortex exhibit normal skin conductance

responses (SCR4) to experienced losses in the IGT but fail

to develop anticipatory SCRs to risky choices as normal

subjects do [13]. However, imaging studies have associated

VMPFC more strongly with experienced reward than with

reward anticipation, as discussed below.

4.1.1.4. Amygdala. The amygdala is a complex subcortical

structure that is heavily involved in emotion and learning,

particularly for negative outcomes (but also possibly for

positive outcomes, see [11]). The amygdala is essential for

both the production of fear responses and for the learning of

associations between particular stimuli and fear responses

(see Fanselow and LeDoux [36] for review). It is also

involved in the perception of fearful facial expressions [88].

As discussed in greater detail below, it appears that the

amygdala plays a key role in the representation of experience

utility for losses. However, the amygdala also appears to be
4 The SCR is a measure of electrical conductance between 2 points on the

skin and is sensitive to physiological arousal, stress, and anxiety.
important for decision utility regarding negative outcomes.

In the IGT, patients with amygdala lesions do not learn to

choose the less risky, positive expected value decks.

Whereas normal (control) subjects develop anticipatory

SCRs in response to choices from the risky decks following

practice, patients with amygdala lesions do not develop such

responses nor do they exhibit normal increases in SCRs to

losses [14]. These results suggest that the acquisition of

fearful anticipatory SCRs to losses requires the amygdala.

Neuroimaging results have shown that the amygdala is active

during the anticipation of losses ([21,58]).

4.1.2. Experience utility

Regions sensitive to experience utility should exhibit

activity during the experience of positive or negative

outcomes and show modulation according to the valence

and/or magnitude of the outcome. The neural basis of

experience utility has been associated with a network of

limbic, brainstem, and cortical areas. In particular, neuro-

imaging results have implicated the striatum and orbital and

ventromedial prefrontal cortices in the processing of

experienced rewards and the amygdala in the processing

of experienced losses.

4.1.2.1. Striatum. The striatum is a complex structure that

can be separated into the dorsal striatum (including the

caudate nucleus and dorsal putamen) and the ventral

striatum (including the nucleus accumbens and ventral

putamen), each of which participates in different cortico-

striatal loops (e.g., [50]). In particular, the ventral striatum

receives inputs primarily from limbic structures such as the

hippocampus, amygdala, and VMPFC, whereas the dorsal

striatum receives inputs primarily from dorsal and lateral

prefrontal cortices. The ventral striatum appears to respond

to both anticipated rewards [70] and experienced rewards

[21], whereas the dorsal striatum (including the caudate

nucleus) appears to play a distinct role in the processing of

experienced reward magnitude and valence. For example,

Delgado et al. [28] described a direct relationship between

reward magnitude and valence, and activity in the dorsal

striatum. These authors employed an event-related fMRI

procedure in which subjects received monetary rewards and

punishments of varying size dependent upon performance in

a gambling task. Their findings showed that the degree of

activation of the caudate nucleus varied consistently with

both the magnitude and valence of the reward; the caudate

nucleus responded most for large rewards and least for large

punishments. Similarly, Knutson et al. [70] found that dorsal

striatal areas respond differentially to the receipt of large

gains and losses. As with the DA system, it is thought that

the role of the striatum is closely tied to action selection; for

example, the response of the striatum to rewards that are

contingent upon behavior is greater than for rewards that are

not contingent upon behavior ([121,131]. It is also unclear

to what degree these striatal responses reflect DA activity

versus cortical inputs to the striatum.
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4.1.2.2. Prefrontal cortex. The ventromedial prefrontal

cortex (VMPFC) has been associated with the receipt of

rewards [71,91,100] and with the evaluation of desirable

stimuli [34]. Furthermore, activity in this region correlates

with subjective taste preferences for beverages [83],

suggesting that activity in the region is sensitive to the

relative subjective desirability of experienced stimuli.

Patients with lesions to the VMPFC are impaired at the

Iowa Gambling Task [12,15], that is, they never develop a

preference for the bsafeQ decks in the IGT (i.e., those with

positive expected value), tending to continue choosing from

the briskyQ decks (i.e., those with negative expected value).

However, these patients do exhibit normal SCR responses to

experienced losses [13], suggesting that VMPFC is not

necessary for the emotional experience of a loss. Rather, the

impairment of VMPFC patients on the IGT appears to

reflect an impairment of executive control over behavior

rather than one of value representation per se. Fellows and

Farah [38] used a shuffled version of the IGT in which the

losses associated with each deck were encountered within

the first few trials, thereby reducing the reversal learning

aspect of the task. Although VMPFC lesion patients were

impaired at the standard IGT, they were unimpaired at the

shuffled version, suggesting that their impairment is related

to the reversal requirement.

The anterior cingulate cortex is also sensitive to the

experience of negative outcomes, as reflected in the feed-

back error-related negativity (ERN) event-related brain

potential. The ERN is greater for losses than for gains in a

gambling task [45]. Of particular interest in this study is the

fact that the ERN occurred even when the actual loss was

smaller than an alternative possible loss (i.e., a relatively

positive outcome), suggesting that it uniquely reflects the

negative aspect of outcome value. One recent proposal

suggests that the increased ERN for negative feedback

reflects decreases in phasic dopaminergic signals to the

anterior cingulate cortex which, in turn, signal negative

prediction error [54]. Thus, ERN responses for negative

outcomes may be a reflection of dopaminergic activity.

4.1.2.3. Amygdala. The amygdala may be involved

specifically in the representation of negative outcomes.

The primary evidence in favor of this is that patients with

lesions to the amygdala show learning impairments on

the IGT. The amygdala appears to play a role in the

processing of losses per se, as patients with amygdala

lesions do not exhibit normal SCRs to losses in the IGT

[14]. This may reflect the amygdala’s more general role

in the processing of fear-related stimuli, reflected in its

mediation of fear conditioning [72,81] and in the

processing of fearful facial expressions [88]. Interestingly,

there is some evidence to suggest that the amygdala may

also encode information concerning gains ([44]; see also

[6] for data suggesting that the amygdala’s apparent

negative bias may result, in part, from the higher average

intensity of negative stimuli).
4.2. Neural representation of outcome probability

From the standpoint of prospect theory, the important

aspects of probability representation are the curvature of the

weighting function (reflecting the underweighting of high

probabilities and overweighting of low probabilities) and the

elevation of the weighting function (representing the overall

willingness to entertain risk). Current neuroscientific re-

search does not provide direct evidence regarding the

mechanisms underlying these phenomena, but recent work

has begun to elucidate the regions that are involved in the

representation of outcome probabilities.

A substantial body of recent work examining the cortical

representation of outcome probability has examined oculo-

motor tasks in primates. This work has focused on the lateral

intraparietal area (LIP), a region that shows modulated

activity during oculomotor tasks [102,109] and that acts to

guide saccadic eye movements in a manner believed to

reflect motor planning activity [47,114]. The importance of

LIP in the representation of reward probability was

demonstrated by Platt and Glimcher [94], who trained

monkeys to make visual saccades into and out of the

receptive fields of individual LIP neurons in exchange for

juice rewards of varying magnitude and delivery probability.

Significantly greater activation was seen in LIP neurons

when saccades were instructed with a reward probability of

80% compared to when equivalent movement was

instructed with a reward probability of 20%. That is, the

activity of individual LIP neurons changed according to the

probability that a particular response would result in a

reward. Remarkably, movement amplitude, latency, and

velocity did not change with outcome probability and, thus,

it seems apparent that LIP neuronal activity is correlated

with the probability that a particular (rewarded) response

will be required regardless of the movement actually made.

Subsequently, Sugrue et al. [117] also affirmed a convincing

role for the LIP in the representation of reward probability

as assayed through saccades. After training rhesus

monkeys in a visual discrimination task involving a

fixation, delay, and saccade routine, unit recordings were

made in LIP as the animals made choices between stimuli

linked to high and low-probability rewards. LIP neurons

matched for receptive field properties showed differential

activity depending on anticipated reward probability and,

moreover, in the presence of low-probability reward the

activity of these units became tonic as their discrim-

inability declined. It must be noted that, because these

studies did not vary magnitude as well as probability, it is

not possible to determine whether LIP is representing

probability per se or some function of probability (e.g.,

expected utility). In addition, it is not clear how these

findings extend to other task domains or whether they are

specific to eye movements.

Reward probability may also be represented less directly

by the dopamine system. In a discrimination learning task,

Fiorillo et al. [40] found that dopaminergic neuronal activity
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varied monotonically with reward outcome probability.

These authors trained monkeys on a visual discrimination

task and recorded the activity of single dopaminergic

neurons under conditions in which the receipt of a reward

was maximally uncertain (50% reward) and maximally

certain (0% or 100% reward). These neurons responded to

rewards when they were unexpected (i.e., 0% condition) and

to cues that predicted reward (i.e., 100% condition). In

addition, dopaminergic neurons showed monotonically

increasing phasic activation during the delay period for

stimuli that were maximally unpredictable (i.e., 50%

condition). Similar results were found in humans using

fMRI by Aron et al. [9]. In this study, activity in the

midbrain (putatively dopaminergic regions) was modulated

by the predictability of subsequent cognitive feedback

during a probabilistic learning task. That both of these

studies find greatest activity during conditions of maximal

uncertainty suggests that the dopamine system, rather than

directly coding probability, may be coding for the degree of

risk associated with a decision.

4.3. Prospect theory and the brain

The foregoing review outlines a relatively complex set of

neural structures and interactions involved in the represen-

tation of decision and experience utility and probability. We

now turn to examine how these data might be related to the

value and weighting functions of prospect theory.

4.3.1. Shape of the value function

Curvature of the value function in prospect theory

appears to be similar for gains and losses [2,123]. This

suggests that a common process may be involved in the

representation of value magnitude regardless of valance

(i.e., equally for both gains and losses). Consistent with

this hypothesis, there is evidence from neuroscience to

suggest that several neural systems involved in value

representation may separately represent valence and

magnitude, at least for experienced outcomes. Analyzing

human event-related potentials, Yeung and Sanfey [130]

demonstrated that the well-characterized P300 event-

related potential is sensitive to reward magnitude but not

valence, whereas the subsequent feedback-related ERN

showed the reverse pattern. Thus, the neuroscientific data

provide at least qualified support for the existence of

systems that respond uniquely to magnitude regardless of

valence. However, this segregation is not complete, as the

striatum appears to be sensitive to both the magnitude and

valence of outcomes (e.g., [28]).

4.3.2. Loss and risk aversion

In prospect theory, the value function is typically 2–3

times steeper for losses than for equivalent gains. For mixed

(gain/loss) prospects, loss aversion gives rise to pronounced

risk aversion. From a neural standpoint, one might surmise

that loss aversion arises from the differential influence of
responses in the various systems that code for positive and

negative expected values. The ventral striatum may be a

central locus for the integration of these signals, as it

receives inputs from amygdala, hippocampus, and prefrontal

cortex as well as dopaminergic inputs from the midbrain and

therefore has access to signals coding for both positive and

negative value. For learning tasks involving reward associ-

ations (e.g., the IGT), it is clear that lesions to the amygdala

and ventromedial prefrontal cortex result in decreased risk

aversion. However, no published studies have examined

these patients on pure or mixed gambles of the sort

discussed above and, thus, it is not known whether these

deficits persist when the learning demands are removed.

Recent results showing that VMPFC lesion patients can

perform the IGT normally under particular circumstances

[39] suggest that their deficits reflect learning problems

more than they reflect a general modulation of loss aversion.

These findings are consistent with those of Rolls and

colleagues (e.g., [103]) suggesting that the orbitofrontal

cortex may be specifically involved in reversal of reward

associations.

Recent evidence also suggests that the noradrenergic

system may be important for loss aversion. Noradrenaline is

known to mediate anxiety and stress (for reviews, see

[46,89]) and has been shown to play a role in post-

traumatic stress reactions [115] and the consolidation of

fear memories [73]. Rogers et al. [101] examined the effect

of central NA blockade on decision making in healthy

volunteers through the administration of propranolol (a h-
adrenergic antagonist). Subjects were presented with mixed

gain–loss gambles as well as pure gain and loss gambles.

Participants administered a single 80 mg dose of propra-

nolol appeared to be less sensitive to the magnitude of

possible losses for mixed (gain–loss) gambles when the

probability of loss was high (though not when it was low),

whereas their sensitivity toward the magnitude of possible

gains was not significantly affected. In contrast, propranolol

and control participants displayed roughly equal tendencies

toward risk aversion for pure gain gambles and risk seeking

for pure loss gambles. Taken together, this pattern is

consistent with the hypothesis that the drug affects loss

aversion (k in prospect theory) rather than curvature of the

value function (a and b). Further studies are necessary to

determine whether manipulation of other neurotransmitter

systems also affects loss aversion. For example, although

the modulatory neurotransmitter serotonin is thought to

underlie the response to punishment (e.g., [27]), studies of

decision making following tryptophan depletion (which

reduces serotonin levels) suggest that loss aversion is not

affected [99].

4.3.3. Curvature of the weighting function

The weighting function in prospect theory is inverse-S-

shaped, reflecting overweighting of low probabilities and

underweighting of high probabilities. A critical question

arising from prospect theory is why the probability
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weighting function takes this particular shape. The stand-

ard explanation for this finding has appealed to the

psychophysics of diminishing sensitivity, but other evi-

dence suggests that it may instead (or in addition) reflect

emotional aspects of the decision. In particular, the

underweighting of high-probability gains and overweight-

ing of low-probability losses may reflect fear, whereas the

overweighting of low-probability gains and high-proba-

bility losses may reflect hope. The neural bases of these

functions are not currently known. However, one might

hypothesize that fear would involve the amygdala, whereas

hope would involve the ventral striatum. It is also possible

that the risk-related DA activity observed by Fiorillo et al.

[40] in anticipation of uncertain rewards may reflect

bhopeQ, although this is speculative at present.

4.3.4. Elevation of the weighting function

The weighting function is generally characterized by

bsubcertaintyQ in which decision weights for complemen-

tary prospects sum to less than 1. This is manifested as a

more pronounced tendency toward risk aversion than risk

seeking for simple gambles involving gains (and presum-

ably a more pronounced tendency toward risk seeking than

risk aversion for simple gambles involving losses). There is

little current evidence regarding the neural substrates for

elevation of the weighting function in general, or sub-

certainty in particular. However, we speculate that elevation

of the weighting function may be related to impulsivity,

given that the impulsive acceptance of gambles would

result in an increase in weighting function elevation

(prospect theory parameter d). This would suggest that

elevation may be related to the dopaminergic and seroto-

nergic systems, both of which are associated with impul-

sivity [24,35]. It is also of great interest that there is a

substantial degree of individual variability in weighting

function elevation [49]. If a link between DA/5-HT systems

and elevation is established, then future genetic association

studies focused on these transmitter systems could possibly

provide an explanation for some of the individual differ-

ences observed in elevation.

4.3.5. Framing and editing operations

The representational aspects of prospect theory, encom-

passing framing effects and editing operations, concern

how the representations of prospects affect their utility and

how these representations can be manipulated or altered by

the decision maker. Although there is little evidence

regarding the neural basis of these components, several

results provide the basis for preliminary speculations. In

particular, recent dual-process models of judgment and

choice have distinguished spontaneous, associative, affec-

tive processing (bSystem IQ) from effortful, rule-based, and

cognitive processing (bSystem IIQ; see [33,111,116]).

Kahneman [60] argues that many judgment and decision

processes may be governed by a combination of both forms

of processing. For instance, the use of memory accessibility
or similarity judgment to assess likelihood (the availability

and representativeness heuristics) or the use of affective

responses to make choices (the affect heuristic) may reflect

System I processing. On the other hand, the use of higher-

order reasoning to detect inconsistencies in judgment or

dominance in choice may reflect System II processing. In

the context of prospect theory, we surmise that passive

framing, valuation, and probability weighting processes

may be governed primarily by System I, whereas active

framing and editing may be governed primarily by System

II. As the foregoing review suggests, System I operations

are likely to rely upon limbic and basal ganglia regions.

The more controlled processes associated with System II

are more likely to rely upon the lateral and dorsomedial

prefrontal cortices (e.g., [86]).

Although no neuroscientific studies have directly exaQ

mined framing effects, there is suggestive evidence that

the degree to which an outcome is viewed as a relative

gain or loss affects the neural processing of the outcome.

Breiter et al. [21] compared the response to a $0 outcome

when it was either the best or worst outcome among three

possible outcomes. The response to the outcome in the

ventral striatum was greater when it was viewed as a gain

than as a loss. Similarly, the response to rewards in ventral

striatum and ventromedial prefrontal cortex differs when

the reward occurs in the context of a winning streak

[30]. Thus, there is suggestive evidence that the processing

of reward depends upon the context in which it occurs.

There are no current results that address the issue of

reframing.

Editing processes, which involve the spontaneous

reformulation of prospects, are likely to heavily involve

working memory and executive control processes and, thus,

may be reliant upon dorsolateral prefrontal cortices. In

addition, editing processes likely require inhibition of

prepotent (automatic) responses to allow manipulation of

the prospect before making a decision. To the degree that

editing requires controlled processing, it may be necessary

to inhibit a relatively fast and automatic response driven by

System I. Such inhibition is likely to involve the right

lateral prefrontal cortex [8], as well as the DA and NA

systems [7]. Consistent with this proposal is the fact that

patients with VMPFC lesions appear to be impaired at

suppressing their initial response on the basis of new

information in the IGT [39].
5. Future directions

As the foregoing review outlines, there is a large body

of suggestive evidence regarding the neural basis of

decision making, and it is possible to at least weakly

associate neural systems with the different components of

prospect theory. Further work will be needed to better

judge the degree to which this theory provides leverage

towards understanding the neural basis of decision making.
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Some of the most interesting outstanding questions

include:

5.1. How can we extend the present account from decisions

under risk to decisions under uncertainty?

In this paper, we have focused on decision making under

risk, where the probabilities of possible outcomes are

known precisely by the decision maker. Indeed, the

probability weighting function from prospect theory applies

only to these contexts. It is an important question how to

extend the treatment from risk to uncertainty, where

decision makers must judge for themselves the probabilities,

with some degree of vagueness or imprecision. Cumulative

prospect theory [123] provides such an extension and a

characterization of decision weights under uncertainty can

be found in both Tversky and Fox [122] and Wu and

Gonzalez [128]. Subsequent studies have found that

decisions under uncertainty adhere reasonably closely to

the predictions of a btwo-stage modelQ in which decision

makers first assess the probabilities of events themselves,

then weight these judged probabilities according to the same

inverse-S-shaped function that they use for decisions under

risk ([42,43,122,128]; but see [67]).5

Recently, Barron and Erev ([10]; see also [53])

examined bsmall feedback-basedQ decisions in which

small decisions are repeated many times so that the

probabilities of relevant outcomes are learned over time

from experience rather than provided explicitly to

participants. Similarly, Hertwig et al. [53] examined

decisions in which participants were allowed to learn

the probability distribution of possible outcomes by

sampling from a distribution with replacement before

making a choice among prospects. In an intriguing set of

studies, these authors observed patterns of behavior that

on their surface seem to reverse the patterns of over- and

underweighting previously documented by Kahneman and

Tversky and others. We say bon their surfaceQ because it

is important to recognize that these studies entailed

uncertainty rather than risk. Although one could, in

principle, compare decision weights to the probability

distributions from which outcomes were sampled with

replacement, such a comparison is not particularly mean-

ingful in prospect theory. For one thing, the sample that a

particular participant observes is unlikely to coincide with

the process that generated it. Moreover, even if the sample

does perfectly reflect the process that generated it, there is
5 Although the two-stage model fits the data quite well, a third stage is

needed to accommodate ambiguity aversion [32] and the preference to

bet on more familiar domains of uncertainty such as the domestic, rather

than a foreign, stock market. This third stage might be modeled as a

shift in the elevation of decision weights in situations where the decision

maker feels especially knowledgeable or ignorant relative to other

domains or people (for more detailed discussions, see [43], pp. 892–893;

[42]).
no particular reason to believe that a participant’s

subjective beliefs will necessarily coincide with the

relative frequency of events that they observed. Thus, it

appears that these effects are driven primarily by

distortions in belief rather than distortions in the weight-

ing of probabilities. Indeed, when Fox and Tversky ([43],

Study 2) presented participants with an entire distribution

of events, participants subsequently overestimated the

probability of drawing low-frequency events and under-

estimated the probability of drawing high-frequency

events. Moreover, decision weights under uncertainty

reflected the same over- and underweighting of these

judged probabilities as did decision weights under risk in

which participants were provided with probabilities.

At the neural level, it is likely that experience-based and

description-based decisions may rely upon overlapping but

partially separate sets of neural systems. In particular, the

dorsal striatum and DA system are important for learning

based on trial-by-trial feedback [95,110]. Examination of

feedback-based decision making would allow a greater

connection between the substantial literature on the cogni-

tive neuroscience of learning. Particularly exciting is the

possibility that quantitative models of decision making, such

as prospect theory, could be interfaced with computational

learning models, providing a compound model of both

learning and decision making.

5.2. How are affective and cognitive signals integrated in

probability weighting?

A substantial body of work cited in this paper suggests

that decisions under risk, as modeled by prospect theory,

may be driven by both cognitive and affective signals.

Future research is needed to tease out the relative

contribution of these factors. For instance, Hsee and

Rottenstreich [55] distinguish bvaluation by calculationQ
from bvaluation by feelingQ and observe that the charac-

teristic concave shape of the value function for gains may

reflect a weighted average of a linear function derived by

cognitive appraisals of quantity and a step function

implied by affective assessment of the nature of con-

sequences. Likewise, we surmise that the characteristic

inverse-S shape of the weighting function may stem from

the combination of a cognitive assessment of probability

or expected value and adjustments due to the anticipatory

emotions hope (that a small probability gain might be

realized) and fear (that a large probability gain may not

be realized). These insights suggest that the neural

systems involved in probability weighting will likely

include convergence zones for emotional and cognitive

signals. As noted above, the ventral striatum is a likely

candidate for this sort of integration, given its connections

and its receipt of substantial DA inputs (cf. [125]). Future

work using paradigms that combine objective probability

weighting with emotionally laden stimuli could address

this issue.
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5.3. What is the role of inhibition in decision making?

A number of studies have begun to focus on the role of

cognitive control processes in decision making, but rela-

tively little attention has been paid to the role of response

inhibition (although see [39]). However, there a number of

clinical syndromes (e.g., attention deficit disorder, drug

abuse, and compulsive gambling) in which impairments of

decision making seem to largely reflect the inability to

inhibit immediate responses in favor of more optimal

delayed responses. The relationship between response

inhibition and the temporal discounting of rewards is not

currently known, and understanding this issue could provide

substantial leverage towards the characterization and treat-

ment of decision making disorders.
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